

Smoking and Neurodegenerative Diseases

Reuck JD*

Department of Neurology, University Hospital, Ghent (9000), Belgium

Abstract

Although it is already known for a long time that smoking promotes and aggravates cardio-vascular and cerebro-vascular diseases, its effect on neurodegenerative diseases is less known. The present article reviews the literature data on the effect of smoking in different neurodegenerative diseases.

Smoking has a clear positive protective effect on Parkinson's disease and on multiple system atrophy. However, for the other neurodegenerative diseases the findings are more dough full, as many other factors like arterial hypertension, hypercholesterolemia, heart disease, stroke and obesity, also are interfering factors. All together, these factors are contributing to increase the severity of neurodegenerative diseases.

Keywords: Parkinson's disease; Alzheimer's disease; Frontotemporal lobar degeneration; Lewy body disease; corticobasal degeneration; progressive supranuclear palsy; multiple system atrophy; amyotrophic lateral sclerosis

Introduction

While age, sex and race/ethnicity are non-modifiable risk factors for cardiovascular and cerebrovascular events, smoking, arterial hypertension, hypercholesterolemia and diabetes are more commonly reported modifiable risk factors [1]. There is a causal association between smoking and ischemic stroke, transient ischemic attack, coronary artery disease, heart failure, abdominal aortic aneurysm, peripheral arterial disease, and arterial hypertension [2].

There is a genetic predisposition to smoking initiation and the association with ischemic large and small vessel stroke but not with cardio-embolic stroke or intracerebral haemorrhage [3].

A strong dose-response relationship is observed between the number of cigarettes smoking and the incidence of ischemic stroke among young men. Although smoking cessation must be the main goal, even smoking fewer cigarettes may reduce the risk of ischemic stroke [4].

Passive smoking increases also the overall risk of stroke [5].

There is recent evidence that medicinal nicotine is potentially harmful for the neurodevelopment in children [6].

Nicotine, on the other hand, by virtue of its short-term action on the cholinergic system, has positive effects on certain cognitive domains, including working memory and executive function [7].

So it appears interesting to review the literature concerning the influence of smoking in different neurodegenerative diseases.

Main Body

Most studies have focussed on the neuroprotective effect of smoking in early Parkinson's disease (PD) [8]. Former smokers have a 20% decreased risk and current smokers a halved risk of developing PD compared to never smokers. Strong dose-response relationships with smoking intensity and duration are found [9]. PD starts more than 3 years later in the smoking PD patients compared to the never-smoking ones. Also motor fluctuations and dyskinesia are

*Correspondence to: Jacques De Reuck, Department of Neurology, University Hospital, Ryvissche park 16, 9052 Zwijnaarde, Belgium, Tel: 0032 (0) 474 652076; E-mail: dereuck.j@gmail.com

Received date: June 24, 2022; Accepted date: Jul 07, 2022; Published date: Sep 02, 2022

Citation: Reuck JD (2022) Smoking and Neurodegenerative Diseases. Ann of Neuro and NeuroSci 2022; v1(1): 1-3

Copyright: © 2022 Reuck JD. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

more frequent and appear earlier after levodopa treatment in the non-smoking compared to the ever-smoking PD patients [10]. However, current cigarette smoking is on the long time associated with faster cognitive decline in PD [11].

The overall literature indicates that former and active smoking is related to an increase for developing Alzheimer's disease (AD) [12]. One study mentioned that a 10-25 % reduction of the number of AD patients could potentially be obtained by the combined prevention of smoking together with diabetes, arterial hypertension, midlife obesity, depression, cognitive inactivity and educational attainment [13]. However, more recent literature finds the current evidence that promotion of AD onset and progression by smoking alone is rather weak [14-15].

There are only a few articles concerning smoking and frontotemporal lobar degeneration (FTLD). One article found that smoking in FTLD has a similar risk profile as in AD [16]. Comparing the influence of smoking on the FTLD behavioural- variant and the primary progressive aphasia, no difference is described. However, a significant percentage of patients with the FTLD behavioural variant subtype smoked more in the last 30 days compared to those with the primary progressive aphasia type [17].

One article mentions that heavy lifetime cigarette smoking significantly reduces the relative risk for developing Lewy body dementia (LBD), similar to the reduced risk for PD [18]. However, another study found no more rapid cognitive decline in LBD compared to AD among smokers [19]. Neuroleptic medication in LBD reduces nicotine binding in the brain [20].

Several studies confirm that smoking has no influence on the disease course and the severity of progressive supranuclear palsy (PSP) [21-23]. Only drinking well water for several years is considered as a risk factor for PSP [24].

Two studies show that smoking protects again Multiple System Atrophy (MSA) [22, 25]. The prevalence of MSA amongst ever smokers is lower compared to never smokers [25].

Concerning the influence of smoking associated with the onset and the progression of Amyotrophic Lateral Sclerosis (ALS) there are divergent opinions as other factors such as nutritional status, including vitamin D deficiency, and co-morbidities, ethnicity and genetic factors and lack of supportive care also appear to be more important risk factors [26]. One study found that smokers have a higher risk of ALS compared to never smokers [27]. A meta-analysis in another study does not support an overall strong association of smoking with ALS risk but suggests that smoking may be associated with a higher risk of ALS in women [28]. Another study found only a weak evidence of a positive effect of current smoking on the risk of ALS. Also no dose-dependence with higher levels of lifetime smoking is observed and may be a false positive result [29]. One study suggests that the combination of the smoking status with moderate levels of physical activity shares a positive correlation with ALS [30].

No articles are found concerning the influence of smoking in corticobasal degeneration.

Conclusions

Although it is already known for a long time that smoking promotes and aggravates cardio-vascular and cerebro-vascular diseases, its effect on most neurodegenerative diseases is less well known.

Only on PD and MSA a clear positive effect of smoking has been found. However, for the other neurodegenerative diseases the findings are more dough full, as many other factors like arterial hypertension, hypercholesterolemia, heart disease, stroke and obesity, also are interfering factors. All together, these factors are contributing to increase the severity of neurodegenerative diseases.

References

- Boehme AK, Esenwa C, Elkind MSV. Stroke risk factors, genetics, and prevention. *Circ Res*. 2017; 120(3): 472-95.
- Larsson SC, Mason AM, Back M, Klaer SM, Damrauer DC, Program MV, et al. Genetic predisposition to smoking in relation to 14 cardiovascular diseases. *Eur Heart J*. 2020; 41(35): 3304-10.
- Larsson SC, Burgess S, Michaelson K. Smoking and stroke: a mendelian randomization study. *Ann Neurol*. 2019; 86(3): 468-71.
- Markidan J, Cole JW, Cronin CA, Merino JG, Philipps MS, Wozniak MA, Kittner SJ. Smoking and risk of ischemic stroke in young men. *Stroke*. 2018; 49(5): 1276-8.
- Pan B, Jin X, Jun L, Qui S, Zheng Q, Pan M. The relation between smoking and stroke: A meta-analysis. *Medicine (Baltimore)*. 2019; 98(12): e14872.
- McGrath-Morrow SA, Gorzkowski J, Croner JA, Rul-Barker RA, Wilson K, Tanski SE, et al. The effect of nicotine on development. *Pediatrics*. 2020; 145(3): e20191346.
- Swan GE, Lessov-Schlaggar CN. The effect of tobacco smoke and nicotine on cognition and the brain. *Neuropsy Pan*. 2007; 17(3): 259-73.
- Ascherio A, Schwarzschild MA. The epidemiology of Parkinson's disease: risk factors and prevention. *Lancet Neurol*. 2016; 15(12): 1257-72.
- Gallo V, Vineis P, Cancellieri M, Chiodini P, Barker RA, Brayne C, et al. Exploring causality of the association between smoking and Parkinson's disease. *Int J Epidemiol*. 2019; 48(3): 912-25.
- De Reuck J, De Weweire M, Van Maele G, Santens P. Comparison of age of onset and development of motor complications between smokers and non-smokers in Parkinson's disease; *J Neurol Sci*. 2005; 231: 35-9.
- Paul KC, Chuang Y-H, Shih I-F, Keener A, Bordelon Y, Bronstein JM, Ritz B. The association between lifestyle factors and Parkinson's disease progression and mortality. *Mov Disord*. 2019; 34(1): 58-66.
- Durazzo TC, Mattsson N, Weiner MW. Alzheimer's disease neuroimaging Initiative. *Alzheimers Dement*. 2014; 10(3 Suppl): 5122-45.
- Barnes DE, Yaffe K. The projected effect of risk factor reduction on Alzheimer's disease prevalence. *Lancet Neurol*. 2011; 10(9): 819-28.

14. Hersi M, Irvine B, Gupta P, Gomes J, Birkett N, Krewski D. Risk factors associated with the onset and progression of Alzheimer's disease: a systematic review of the evidence. *Neurotoxicology*. 2017; 61: 143-87.
15. Yu J-T, Xu W, Tan C-C, Andrieu S, Suckling J, Evangelou E, et al. Evidence-based prevention of Alzheimer's disease: systematic review and meta-analysis of 243 observational prospective studies and 153 randomised controlled trials; *J Neurol Neurosurg Psychiatry*. 2020; 91(11): 1201-9.
16. Adani G, Filippini T, Garuti C, Malavolti M, Vinceti G, Zamboni G, et al. Environmental risk factors for early-onset Alzheimer's dementia and frontotemporal dementia: a case-control study in northern Italy. *Int J Environ Res Public Health*. 2020; 17(21): 7941.
17. Kalapatapu RaJ, Delucchi KL, Wang S, Harbison JD, Nelson EE, Kramer JH. Substance use history in behavioural variant frontotemporal dementia versus primary progressive aphasia. *J Addict Dis*. 2016; 35(1): 36-41.
18. Tsuang D, Larson EB, Li G, Shofer JB, Montine KS, Thompson ML, et al. Association between lifetime cigarette smoking and lewy body accumulation. *Brain Pathol*. 2010; 20(2): 412-8.
19. Bergland AK, Dalen I, Larsen AI, Aarsland D, Soennesen H. Effect of vascular risk factors on the progression of mild Alzheimer's disease and lewy body dementia. *J Alzheimers Dis*. 2017; 56(2): 575-84.
20. Court JA, Piggott MA, Lloyd S, Cookson N, Ballard CG, McKeith IG, et al. Nicotine binding in the human striatum: elevation in schizophrenia and reductions in dementia with Lewy bodies, parkinson's disease and Alzheimer's disease and in relation to neuroleptic medication. *Neuroscience*. 2000; 98(1): 79-87.
21. Davis PH, Golbe LI, Duvoisin RC, Schoenberg BS. Risk factors for progressive supranuclear palsy. *Neurology*. 1988; 38(10): 1546-52.
22. Vanacore N, Bonifati V, Fabbrini G, Colosimo C, Marconi R, Nicholl D, et al. Smoking habits in multiple system atrophy and progressive supranuclear palsy. European Study Group on Atypical Parkinsonisms. *Neurology*. 2000; 54(1): 114-9.
23. Vidal J-S, Vidailhet M, Derkinderen P, Dubard de Gaillarbois T, Tzourio C, Alpérovitch A. Risk factors for progressive supranuclear palsy: a case-control study in France. *J Neurol Neurosurg Psychiatry*. 2009; 80(11): 1271-4.
24. Litvan I, Lees PS, Cunningham CR, Rai SN, Cambon AC, Standaert DG, et al. Environmental and occupational risk factors for progressive supranuclear palsy: case-control study. *Mov Disord*. 2016; 31(5): 644-52.
25. Tseng F-S, Deng K, Ong Y-L, Li H-H, Tan E-K. Multiple system atrophy (MSA) and smoking: a meta-analysis and mechanistic insights. *Aging (Albany NY)*. 2020; 12(21): 21959-70.
26. Wang M-D, Little J, Gomes J, Cashman NR, Krewski D. Identification of risk factors associated with onset and progression of amyotrophic lateral sclerosis using systematic review and meta-analysis. *Neurotoxicology*. 2017; 61: 101-30.
27. Zhan Y, Fang F. Smoking and amyotrophic lateral sclerosis: a mendelian randomization study. *Ann Neurol*. 2019; 85(4): 482-4.
28. Alonso A, Logroscino G, Hernan MA. Smoking and the risk of amyotrophic lateral sclerosis: a systematic review and meta-analysis. *J Neurol Neurosurg Psychiatry*. 2010; 81(11): 1249-52.
29. Opie-Martin S, Jones A, Iacoangeli A, Al-Khleifat A, Oumar M, Shaw PJ, et al. UK case control study of smoking and risk of amyotrophic lateral sclerosis. *Amyotroph Lateral Scler Frontotemporal Degener*. 2020; 21(3-4): 222-7.
30. Bandres-Ciga S, Noyce A, Hemani G, Nicolas A, Calvo A, Mora G, et al. Shared polygenic risk and causal inferences in amyotrophic lateral sclerosis. *Ann Neurol*. 2019; 85(4): 470-81.